Access
To read this story in full you will need to login or make a payment (see right).

Letter

Nature 464, 271-274 (11 March 2010) | doi:10.1038/nature08905; Received 2 October 2009; Accepted 2 February 2010

A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry

Joel A. Thornton1, James P. Kercher1,6, Theran P. Riedel1,2, Nicholas L. Wagner3, Julie Cozic3,4, John S. Holloway3,4, William P. Dubé3,4, Glenn M. Wolfe1,2, Patricia K. Quinn5, Ann M. Middlebrook3, Becky Alexander1 & Steven S. Brown3

1. Department of Atmospheric Sciences, 2. Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
3. Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
4. Cooperative Institute for Research in Environmental Studies, Boulder, Colorado 80309, USA
5. Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, USA
6. Present address: Department of Chemistry, Hiram College, Hiram, Ohio 44234, USA.

Correspondence to: Joel A. Thornton1
Correspondence and requests for materials should be addressed to J.A.T.
(Email: thornton@atmos.washington.edu).

Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury1 and hydrocarbons such as the greenhouse gas methane2. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone3, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within

ARTICLE LINKS
- Figures and tables
- Supplementary info

SEE ALSO
- News and Views by von Glasow
- Editor's Summary

ARTICLE TOOLS
- Send to a friend
- Export citation
- Export references
- Rights and permissions
- Order commercial reprints
- Bookmark in Connotea

SEARCH PUBMED FOR
- Joel A. Thornton
- James P. Kercher
- Theran P. Riedel
- Nicholas L. Wagner
- Julie Cozic
the troposphere is generally considered a coastal or marine air phenomenon. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions. We also suggest that a significant fraction of tropospheric chlorine atoms may arise directly from anthropogenic pollutants.

1. Department of Atmospheric Sciences,
2. Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
3. Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
4. Cooperative Institute for Research in Environmental Studies, Boulder, Colorado 80309, USA
5. Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, USA
6. Present address: Department of Chemistry, Hiram College, Hiram, Ohio 44234, USA.

Correspondence to: Joel A. Thornton
Correspondence and requests for materials should be addressed to J.A.T.
(Email: thornton@atmos.washington.edu).

To read this story in full you will need to login or make a payment (see right).
More science jobs
Post a job for free