Aquatic 'dead zones' contributing to climate change

ScienceDaily (Mar. 12, 2010) — The increased frequency and intensity of oxygen-deprived "dead zones" along the world's coasts can negatively impact environmental conditions in far more than just local waters. In the March 12 edition of the journal Science, University of Maryland Center for Environmental Science oceanographer Dr. Lou Codispoti explains that the increased amount of nitrous oxide (N\textsubscript{2}O) produced in low-oxygen (hypoxic) waters can elevate concentrations in the atmosphere, further exacerbating the impacts of global warming and contributing to ozone "holes" that cause an increase in our exposure to harmful UV radiation.

"As the volume of hypoxic waters move towards the sea surface and expands along our coasts, their ability to produce the greenhouse gas nitrous oxide increases," explains Dr. Codispoti of the UMCES Horn Point Laboratory. "With low-oxygen waters currently producing about half of the ocean's net nitrous oxide, we could see an additional significant atmospheric increase if these 'dead zones' continue to expand."

Although present in minute concentrations in Earth's atmosphere, nitrous oxide is a highly potent greenhouse gas and is becoming a key factor in stratospheric oxygen destruction. For the past 400,000 years, changes in atmospheric N\textsubscript{2}O appear to have roughly paralleled changes in carbon dioxide CO\textsubscript{2} and have had modest impacts on climate, but this may change. Just as human activities may be causing an unprecedented rise in the terrestrial N\textsubscript{2}O sources, marine N\textsubscript{2}O production may also rise substantially as a result of nutrient pollution, warming waters and ocean acidification. Because the marine environment is a net producer of N\textsubscript{2}O, much of this production will be lost to the atmosphere, thus further intensifying its climatic impact.

Increased N\textsubscript{2}O production occurs as dissolved oxygen levels decline. Under well-oxygenated conditions, microbes produce N\textsubscript{2}O at low rates. But at oxygen concentrations decrease to hypoxic levels, these waters can increase their production of N\textsubscript{2}O.

N\textsubscript{2}O production rates are particularly high in shallow suboxic and hypoxic waters because respiration and biological turnover rates are higher near the sunlit waters where phytoplankton produce the fuel for respiration.

When suboxic waters (oxygen essentially absent) occur at depths of less than 300 feet, the combination of high respiration rates, and the peculiarities of a process called denitrification can cause N\textsubscript{2}O production rates to be 10,000 times higher than the average for the open ocean. The future of marine N\textsubscript{2}O production depends critically on what will happen to the roughly ten percent of the ocean volume that is hypoxic and suboxic.

"Nitrous oxide data from many coastal zones that contain low oxygen waters are sparse, including Chesapeake Bay," said Dr. Codispoti. "We should intensify our observations of the relationship between low oxygen concentrations and nitrous oxide in coastal waters."
Number of stories in archives: 82,677

Enter a keyword or phrase to search ScienceDaily's archives for related news topics, the latest news stories, reference articles, science videos, images, and books.

Story Source:
Adapted from materials provided by University of Maryland Center for Environmental Science.

Journal References:

Need to cite this story in your essay, paper, or report? Use one of the following formats:

APA

MLA

Note: If no author is given, the source is cited instead.

Find with keyword(s): Search