Faster Atmospheric Warming In Subtropics Pushes Jet Streams Toward Poles

ScienceDaily (May 26, 2006) — The atmosphere is warming faster in subtropical areas, around 30 degrees north and south latitude, than it is elsewhere, University of Washington-led research shows. But scientists examining more than 25 years of satellite data also found that each hemisphere’s jet stream has moved toward the pole by about 1 degree of latitude, or 70 miles.

That could widen the tropics and expand some of the world’s driest regions, they say. "It is direct observational evidence of atmospheric circulation changes seen from satellites," said Qiang Fu, a University of Washington associate professor of atmospheric sciences and lead author of a paper detailing the findings in the May 26 edition of the journal Science.

The researchers analyzed satellite temperature data collected from 1979 through 2005 and found the troposphere was warming faster in a band around 30 degrees north latitude -- which crosses the southern United States, southern China and northern Africa -- and around 30 degrees south latitude -- which crosses southern Australia, South Africa and southern South America. The troposphere is the layer from the Earth’s surface to about 7.5 miles in altitude, the part of the atmosphere in which most weather occurs.

While a poleward shift of jet streams is a strongly supported prediction by computer models of 21st century climate, the models also show the fastest warming will occur in the tropical upper troposphere. Instead, the research found that warming was actually a bit faster at 30 degrees latitude than over the equator. The enhanced warming at 30 degrees latitude has helped to reshape the atmosphere’s pressure surfaces in a way that pushed the jet streams toward the poles, Fu said. The position of the jet streams -- the band of strongest westerly winds aloft -- is important because it determines the northern and southern limits of the major wet and dry belts on the surface.

Other authors of the paper are Celeste Johanson, a UW atmospheric sciences research assistant and graduate student, and Thomas Reichler, an assistant professor of meteorology at the University of Utah. The work was supported by grants from the National Oceanic and Atmospheric Administration and the National Aeronautics and Space Administration.

Related Stories

Jet Streams Are Shifting And May Alter Paths Of Storms And Hurricanes (Apr. 17, 2008) — The Earth’s jet streams are shifting -- possibly in response to global warming. Scientists have determined that over a 23-year span from 1979 to 2001 the jet streams in both hemispheres have risen in...

Apparent Problem With Global Warming Climate Models Resolved (May 30, 2008) — Yale University scientists may have resolved a controversial glitch in models of global warming. A key part of the atmosphere didn’t seem to be warming as expected. Computer models and basic...

Researchers On Cruise To Understand Major Changes In Atlantic (May 11, 2005) — Scientists at the University of Liverpool are embarking on a research cruise to help them

Drill Here, Drill Now Chuck knows how Vote Chuck DeVore for Senate! www.chuckdevore.com

Forest Carbon Experts Visit Us Now To See Our Prior Forest Carbon Offset Projects. www.finlecarbon.com

Estes Refrigeration Inc. Specializing in refrig service, engineering, & new construction www.estesrefrigeration.com

Breaking News... from NewsDaily.com

Orcas are more than one species, gene study shows
Iceland volcano tremors stay strong, ash plume low
Volcanic ash poses little health threat so far: WHO
Volcanic ash poses little health threat so far: WHO
Space shuttle safely home after one of last missions

In Other News...

City dwellers cite climate as top concern: poll
Obama scolds Wall St for resisting reform
Years later, looking for traces of Sept 11 victims
U.S. budget office: 4 million likely to pay health fine

Learn More on Science Daily

http://www.sciencedaily.com/releases/2006/05/060525194257.htm
Fu and colleagues previously analyzed these measurements to show that the troposphere actually is warming as much as the Earth's surface, a key piece of evidence to demonstrate that the Earth is warming faster than can be accounted for by natural processes.

The new research suggests that faster subtropical warming of the troposphere, which moves the jet streams, also could shift mid-latitude storm tracks poleward, Wallace said. That could reduce winter precipitation in regions such as southern Europe, including the Alps, and southern Australia.

Fu noted the research also appears to show that enhanced warming in the troposphere corresponds closely with enhanced cooling in a higher atmospheric layer called the stratosphere, which extends from about 7.5 miles in altitude to about 31 miles.

"It's a very intriguing problem, why the increase in tropospheric temperatures and the decrease in stratospheric temperatures in the subtropical region happens in tandem, almost exactly," he said.

Need to cite this story in your essay, paper, or report? Use one of the following formats:

APA

MLA

http://www.sciencedaily.com/releases/2006/05/060525194257.htm

Note: If no author is given, the source is cited instead.

Copyright Reuters 2008. See Restrictions.

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Email Newsletters
RSS Newsfeeds

Tell us what you think of the new ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

Your Name:
Your Email:
Comments:

Find with keyword(s): Search

Enter a keyword or phrase to search ScienceDaily's archives for related news topics, the latest news stories, reference articles, science videos, images, and books.