Research on global 'sun block' needed now, experts argue

ScienceDaily (Jan. 28, 2010) — Internationally coordinated research and field-testing on "geoengineering" the planet's atmosphere to limit risk of climate change should begin soon along with building international governance of the technology, say scientists from the University of Calgary and the United States.

See Also:

Matter & Energy • Energy Policy • Solar Energy
Earth & Climate • Environmental Issues • Global Warming
Science & Society • Environmental Policies • Resource Shortage
Reference • Solar radiation • Consensus of scientists regarding global warming • Biomass • Climate model

Solar-radiation management (SRM) would involve releasing megatonnes of light-scattering aerosol particles in the upper atmosphere to reduce Earth's absorption of solar energy, thereby cooling the planet. Another technique would be to release particles of sea salt to make low-altitude clouds reflect more solar energy back into space.

SRM should not take the place of making deep cuts in industrial greenhouse gas emissions and taking action to adapt to climate change, Keith and his American colleagues stress. However, they say: "We must develop the capability to do SRM in a manner that complements such cuts, while managing the associated environmental and political risks."

The scientists propose that governments establish an international research budget for SRM that grows from about $10 million to $1 billion a year between now and the end of 2020. They urge that research results be available to all and risk assessments be as transparent and international as possible to build sound norms of governance for SRM.

Long-established estimates show that SRM could offset this century's predicted global average temperature rise more than 100 times more cheaply than achieving the same cooling by cutting emissions, Keith notes. "But this low price tag raises the risks of single groups acting alone, and of facile cheerleading that promotes exclusive reliance on SRM."

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere. Another technique would be to "geoengineering" the planet's atmosphere to reduce Earth's absorption of solar energy, thereby cooling the planet. Another technique would be to release particles of sea salt to make low-altitude clouds reflect more solar energy back into space.

SRM should not take the place of making deep cuts in industrial greenhouse gas emissions and taking action to adapt to climate change, Keith and his American colleagues stress. However, they say: "We must develop the capability to do SRM in a manner that complements such cuts, while managing the associated environmental and political risks."

The scientists propose that governments establish an international research budget for SRM that grows from about $10 million to $1 billion a year between now and the end of 2020. They urge that research results be available to all and risk assessments be as transparent and international as possible to build sound norms of governance for SRM.

Long-established estimates show that SRM could offset this century's predicted global average temperature rise more than 100 times more cheaply than achieving the same cooling by cutting emissions, Keith notes. "But this low price tag raises the risks of single groups acting alone, and of facile cheerleading that promotes exclusive reliance on SRM."

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.

SRM would also cool the planet quickly, whereas even a massive program of carbon dioxide emission cuts will take many decades to slow global warming because the CO2 already accumulated in the atmosphere will take many years to naturally break down. The 1991 eruption of Mount Pinatubo, for example, cooled the planet by about 0.5 degrees Celsius in less than a year by injecting sulphur into the stratosphere.

But a world cooled by managing sunlight will present risks, the scientists note. The planet would have less precipitation and less evaporation, and monsoon rains and winds might be less than a year by injecting sulphur into the stratosphere.
weakened. Some areas would be more protected from temperature changes than others, creating local 'winners' and losers.'

"If the world relies solely on SRM to limit (global) warming, these problems will eventually pose risks as large as those from uncontrolled emissions," they warn.

Field tests of SRM are the only way to identify the best technologies and potential risks, Keith says. He and the American scientists propose carefully controlled testing that would involve releasing tonnes -- not megatonnes -- of aerosols in the stratosphere and low-altitude clouds.

"If SRM proves to be unworkable or poses unacceptable risks, the sooner we know the less moral hazard it poses; if it is effective, we gain a useful additional tool to limit climate damages."

Responsible management of climate risks requires deep emission cuts and research and assessment of SRM technologies, the scientists say. "The two are not in opposition. We are currently doing neither; action is urgently needed on both."

Story Source:

The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of Calgary, via EurekAlert!, a service of AAAS.

Need to cite this story in your essay, paper, or report? Use one of the following formats:

APA

MLA

Note: If no author is given, the source is cited instead.

Email or share this story: | More

Free Subscriptions

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Email Newsletters
RSS Newsfeeds

Feedback

... we want to hear from you!

Tell us what you think of the new ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

Your Name:

Your Email:

Comments:

Click button to submit feedback: Send It

Copyright Reuters 2008. See Restrictions.

Barclays to pay $298 million in U.S. sanctions case
GM IPO filing expected by Tuesday
Obama touts economic plans on campaign odyssey
Defense chief Gates says wants to leave in 2011

more top news